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We investigate the shot-noise-limited sensitivity of a four-mirror-cavity enhanced Michelson interferometer.
The intention of this interferometer topology is the reduction of thermal lensing and the impact of the inter-
ferometers contrast although transmissive optics are used with high circulating powers. The analytical expres-
sions describing the light fields and the frequency response are derived. Although the parameter space has 11
dimensions, a detailed analysis of the resonance feature gives boundary conditions allowing systematic param-
eter studies.
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I. INTRODUCTION

To improve the strain sensitivity of interferometric
gravitational-wave detectors advanced interferometer topolo-
gies such as resonant sideband extraction �RSE� �1� and sig-
nal recycling �2� will be realized in the next generation. The
sensitivity in the shot-noise-limited region will be increased
by a factor of about 10 over the current detectors by increas-
ing the circulating laser power. Using the power recycling
technique together with high-finesse arm cavities in each in-
terferometer arm and high-power lasers, the circulating light
power will almost reach the megawatt regime. But the per-
formance and sensitivity of these topologies strongly de-
pends on the interferometer’s contrast. Thus, we investigated
a topology—the four-mirror-cavity enhanced Michelson
topology—with the potential to minimize the influence of
imperfections in the contrast and in addition the effect of
thermal lensing although transmissive optics are used with
high circulating powers.

In this paper the investigation of the four-mirror cavity
with respect to the shot-noise-limited sensitivity is presented.
In Sec. II the analytic expressions for the carrier fields and
the frequency response of the four-mirror cavity will be de-
rived. The expressions will be given in analogy to a two-
mirror cavity �Fabry-Perot resonator�, offering an intuitive
understanding of the whole coupled system. Because of the
huge parameter range, configurations yielding satisfactory
sensitivities are not obvious. Thus, to analyze the four-mirror
cavity systematically some basic assumptions and boundary
conditions are necessary. In Sec. III such boundary condi-
tions will be derived from a detailed analysis and visualiza-
tion of the resonance feature. This analysis reduces the num-
ber of free parameters from 11 to 6. Furthermore, it will be
shown that the parameters for the second cavity can be
chosen to give peak sensitivities at selectable frequencies.
These parameters serve as a starting point for all other
parameters that drastically reduces the number of steps in
numerical parameter studies. In Sec. IV the dependence on
the free parameters is demonstrated for special cases and
exemplary shot-noise-limited sensitivities and properties
of the four-mirror cavity are shown in comparison to ad-
vanced Laser Interferometer Gravitational-wave Observatory
�LIGO� �3�.

The intention of future interferometric gravitational-wave
detectors is the enhancement of the shot-noise-limited sensi-
tivity by increasing the circulating light powers inside the
interferometer. Here, the available laser input field would be
ideally exploited if no power is reflected to the interferom-
eter’s input. This can be realized using impedance-matched
Fabry-Perot resonators �cavities� in each interferometer arm.
Using high-finesse resonators would also provide desirable
high circulating powers. But the bandwidths of these resona-
tors are very small, leading to an unsatisfactory sensitivity in
the detection band beyond the arm resonator bandwidth. To
broaden the bandwidth for signal sidebands the RSE scheme
�1� was proposed. Here, an additional mirror is placed in the
interferometer output, forming together with the arm cavi-
ties’ coupling mirrors the extraction cavity. Since this cavity
includes the beam splitter, the performance of the sideband
extraction strongly depends on the interferometer’s contrast.
If the intracavity losses �mainly caused by a bad interferom-
eter contrast� become comparable to the transmission of the
arm cavities’ coupling mirrors, the sideband extraction col-
lapses. To overcome this problem, the power recycling tech-
nique �4� is used. This technique allows the increasing of the
coupling mirror’s transmission so that the intracavity losses
in the extraction cavity become less significant. To maintain
the effective power buildup in the arm cavities, the wasted
power �now reflected from the overcoupled arm cavities� is
recycled in the power recycling cavity �also including the
beam splitter� in such a way that the complete optical con-
figuration is still impedance matched. However, the power
recycling leads to relative high optical powers in the recy-
cling cavity. Here the amount of allowable power is limited
by the nonzero absorption of the used transmissive optics
and their coatings. Due to the effects of thermal lensing �5,6�
and thermal expansion of the optics surfaces, the heating by
optical absorption causes phase front distortions, leading to
poor interference quality �critical for the RSE scheme� at the
dark port operating point. This causes higher optical power
on the photodetector and therefore higher shot noise. Fur-
thermore, the thermal lensing in the substrates of the arm
cavities’ coupling mirrors leads to an unstable cavity for the
rf modulation sidebands needed for controlling the interfer-
ometers �7�.
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The strong dependence on the contrast and the effect of
thermal lensing in these advanced interferometers were the
motivation for investigating techniques and alternative inter-
ferometer topologies to solve these problems. The use of
alternative substrate materials—for example, sapphire—is
one solution �8�. Active thermal compensation provides a
further opportunity to reduce thermally induced phase front
distortions �9–12�. Basically different and promising is the
use of all-reflective interferometer topologies �13�. At
present the application of gratings in future detector topolo-
gies and implementation issues are investigated �14,15�.
However, the fabrication of appropriate reflection gratings
with the dimensions and quality needed for the application in
interferometric gravitational-wave detectors still poses a
problem.

We investigated a topology using additional mirrors in
each interferometer arm and not in the input and output. If an
additional mirror is placed in each interferometer arm, the
power buildup and the extraction of signal sidebands could
be performed without including the beam splitter in a cavity.
Thus, the losses at the beam splitter would not limit the
performance of the interferometer. But with a three-mirror
cavity the effect of thermal lensing could not be avoided
because at least one optical substrate is embedded in a reso-
nator with high circulating power. Also, the resonance con-
dition of carrier and sidebands would not be decoupled.
Thus, with a three-mirror arm cavity there would be no way
to tune the resonators for carrier and sidebands indepen-
dently. But if a fourth mirror is placed in the arms, a second
long resonator is formed �Fig. 1�. This configuration yields
resonance states where the circulating light power in the sec-
ond cavity embedding the optical substrates is small com-
pared to those of the first and third resonators. In this con-
figuration, the resonance conditions of carrier and sidebands
are also coupled. However, the coupling between the first
and third resonators can be varied with the effective trans-
mission of the second resonator. Thus, the frequencies of the
corresponding resonance doublet of these coupled resonators
are tunable. In fact the four-mirror cavity has a resonance
triplet. But the length of the second resonator is chosen to be
small �see Sec. III�, leading to a high resonance frequency
with no effect in the frequency range of interest.

II. ANALYTICAL DESCRIPTION

A. Carrier fields

Since the reason for increasing the circulating light power
in advanced topologies is the improvement of the sensitivity
in the shot-noise-limited frequency region, initially the im-
pact of radiation pressure noise is not considered. Moreover,
taking radiation pressure noise into account would expand
the parameter range as the masses of the mirrors and the
input power also influence the frequency response. Thus, it is
suitable to select parameter configurations at first with re-
spect to satisfying shot-noise-limited sensitivities. After that
the selected configurations can be tested for the effect of
radiation pressure.

If the mirrors are assumed to be ideal �loss free�, the
carrier fields Ck in the four-mirror cavity can be calculated in
analogy to a two-mirror cavity. The enhancement of the input
fields ak inside the corresponding cavities is given by �the
notation refers to Fig. 2�

C3 = a3� =
i�3

1 − �3�4e2i�3
a3, �1a�

C2 = a2� =
i�2

1 − �2�34e
2i�2

a2, �1b�

C1 = a1� =
i�1

1 − �1�234e
2i�1

a1. �1c�

For a detailed derivation of the expression for a two-mirror
cavity refer, for example, to �16�. In Eqs. �1b� and �1c� the
abbreviations �34 and �234 are used to maintain the appear-
ance of a simple two-mirror cavity. They stand for the reflec-
tion of the third cavity �behaving like an ordinary two-mirror
cavity� �M34� given by

FIG. 1. �Color online� Two schematics of a four-mirror-cavity
enhanced Michelson interferometer: The left shows the unfolded
realization. The right setup includes an angle of 90° between the
first and third resonators, exploiting the quadrupole nature of gravi-
tational waves. Here the sidebands are generated differentially in
the first and third resonators.

FIG. 2. �Color online� The notation used in this paper: The
figure illustrates the amplitude coupling in a four-mirror cavity.
Here � j and � j are amplitude reflection and transmission of the
corresponding mirror Mj. The fields coupled at the mirror Mj are
denoted aj, aj� and bj, bj�. The macroscopic lengths of the resonators
are labeled with Lk. These lengths are assumed to be an integer
multiple of half the wavelength corresponding to the carrier light
frequency �0. Then, the resonance is determined by the tuning �mi-
croscopic lengths� �k=�Lk /c mod 2� �note that �0Lk /c is 0�.
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�34��3� = �3a3 + i�3b3 =
�3 − �4e2i�3

1 − �3�4e2i�3
�2�

and the reflection of the three-mirror cavity containing M2,
M3, and M4 �labeled M234 in the following� given by

�234��2,�3� =
�2 − �34e

2i�2

1 − �2�34e
2i�2

. �3�

Note that these complex expressions are frequency-
dependent values. Furthermore, the input field of the third
resonator is a3=C2ei�2 and that of the second one is a2
=C1ei�1. However, writing Ck similar to the two-mirror cav-
ity case and thinking of M34 and M234 as compound mirrors
offers an easier understanding of these expressions.

B. Signal sidebands

The basics of the response to gravitational waves are de-
scribed for example in �17� for a Michelson interferometer
with ordinary two-mirror arm cavities. In this section we
transfer these results to the four-mirror cavity case.

The normalized transfer function G��� to the detection
port for signal sidebands generated in the four-mirror cavity
by gravitational waves �called the “GW-transfer function” in
the following� is composed of three parts corresponding to
the three resonators formed by the four-mirror cavity. Each
of the three parts is the sum of the transfer function for the
upper sidebands �+�� and the lower sidebands �−��. One
obtains

G��� = �
k=1,2,3

Gk��� + Gk
*�− �� �4�

for the readout of the phase modulation and

G��� = �
k=1,2,3

− i„Gk��� − Gk
*�− ��… �5�

for the readout of the amplitude modulation. For an arbitrary
operating point �k

op the terms Gk��� have the form

�6�

Since sidebands generated by a traversing gravitational wave
are impressed due to a modulation process, their amplitudes
are proportional to the carrier field. Accordingly the expres-
sion for the corresponding carrier field Ck �first term of Eq.
�6�� is contained in Gk���. Note that here the input field a1 is
assumed to be unity because Gk represents a normalized
transfer function.

The expression describing the transfer from a gravita-
tional wave to phase shift �modulation depth� is given by
�17�

X
h→�

=
�0

2

1 − ei�l/c

− i�
, �7�

where l is the optical path length. Each sideband impressed
on the carrier Ck by this weak phase modulation has the
amplitude CkJ1�X�=CkX /2. To obtain the magnitude of the
sidebands generated per round trip in the respective cavity
�second term in Eq. �6��, the amplitude attenuation �per
round trip� of this cavity needs to be taken into account. In
the case of the first and second cavities the reflecting mirror
Mr and thus the attenuation is frequency dependent. Accord-
ingly, the first-half and second-half round trip need to be
considered independently. One obtains

Gk
����� = ��k

r���ei�k + �k
r��0�ei�k

op
�
�0

4

1 − ei�Lk/c

− i�
, �8�

where �k
r is the reflection of the respective reflecting mirror

Mr �i.e., in the case of the first cavity �k
r is �234�. The first

term in the parentheses describes the attenuation of the side-
bands generated on the first-half round trip. These sidebands
are reflected at M234 with �234���. The phase �k=�k

op

+�Lk /c accounts for the delay incurring on the second-half
round trip. The second term in the parentheses describes the
sidebands generated on the second-half round trip. The am-
plitude of these sidebands is proportional to the reflected
carrier field. Thus in this case the attenuation �k

r��0� is that of

the carrier amplitude. Here the phase factor ei�k
op

describes
the carrier’s phase delay incurred on the first-half round trip.

In addition the phase relation between the signal side-
bands induced in different cavities needs to be included.
Thus, the geometric layout of the resonators �refer to Fig. 1�
needs to be taken into account as well. If the four-mirror
cavity is not folded, signal sidebands of gravitational waves
are impressed in common mode. But if, for example, the first
and third resonators are orientated orthogonally to each
other, the corresponding sidebands are impressed differen-
tially �due to the quadrupole nature of gravitational waves�.
Thus, in the differential mode G1

�� and G3
�� have different

signs.
Whereas the first two terms of Eq. �6� principally describe

the sideband generation in the respective cavities, the fre-
quency response is mainly determined by the third term in
Eq. �6�. The frequency-dependent enhancement of the side-
bands inside the cavities and the transfer out of the cavities
to the detection port can be obtained from Ck by substituting

Ck��k� → Ck��k
op +

�Lk

c
� , �9�

where �Lk /c describes the phase delay incurring while
propagating over the length Lk. This becomes clear consid-
ering, for example, the first cavity. The expression C1 de-
scribes the enhancement of the amplitude a1 injected at M1
into the first cavity �refer to Fig. 2�. The signal sidebands are
generated inside the cavities, get resonantly enhanced, and
are then transmitted through M1 to the detection port. Hence
we do not need to multiply the sideband amplitudes by �1
upon injection but during the extraction �transmission
through M1� of the cavity, and Eqs. �1a�–�1c� are valid not
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only for the externally injected carrier but also for the inter-
nally generated sidebands.

The shot-noise-limited sensitivity is given by the noise-to-
signal ratio of the signal G��� and the phase fluctuation
equivalent to shot noise �18�,

�̃� =�2	�0

P0
, �10�

leading to

h̃��� =
1

2	G���	
�2	�0

P0
, �11�

where P0 is the power of the incident carrier light. Note that
G��� is calculated for a single interferometer arm. This re-
sults in an additional factor of 1 /2 for the sensitivity of the
whole interferometer �19�. Since this sensitivity depends on
11 parameters �3 macroscopic lengths, 3 tunings, 4 reflectivi-
ties, and the geometric layout�, a qualitative and intuitive
understanding of the resonance feature is necessary to find
some basic assumptions and boundary conditions which al-
low a systematic analysis of the configuration.

III. REDUCTION OF THE PARAMETER RANGE

A. Basic assumptions

Since the four-mirror cavity is meant as an alternative to
RSE topologies, we will derive some basic boundary condi-
tions for the comparison with the advanced LIGO optical
configuration �3�. In consequence, the maximum interferom-
eter arm length is set to 4 km. The calculated strain sensi-
tivities are related to an input power of 125 W. The trans-
mission of the end mirror M4 is set to 50 ppm. In addition, to
avoid thermal effects in the optical substrates embedded in
the second cavity, the power in this cavity needs to be rela-
tively small. Thus, signal sidebands induced in this cavity are
small compared to those induced in the first and third ones.
Accordingly, the length L2 does not need to be long to en-
hance the sensitivity for gravitational waves. It can be shown
that even the shape of the GW-transfer functions is not sig-
nificantly affected by L2. Thus, L2 is arbitrarily set to 10 m
for all calculations. Hence the second cavity can be under-
stood as an etalon whose transmission Tc determines the cou-
pling of the first and third cavities and thus the frequency
splitting of the corresponding resonance doublet. This is one
key feature of the topology. The four-mirror cavity behaves
like a three-mirror cavity with variable coupling. The prop-
erties of the second cavity solely determine the frequency
splitting.

B. Resonance feature

The transmission of an ordinary two-mirror cavity be-
comes maximum on resonance. In analogy to this, the reso-
nance condition of the four-mirror cavity corresponds to lo-
cal maxima in the transmitted field. Concerning a two-mirror
cavity, the incident light resonates if the phase shift per
round trip equals 0 mod�2��. Here the phase shift comes
from the phase delay 2�L /c incurred while traveling twice

the macroscopic length L. In the case of the four-mirror cav-
ity, the phasing in the first cavity is composed of the corre-
sponding delay 2�L1 /c and the phase shift arg��234� in re-
flection of M234. For given reflectivities and tunings �3 and
�2, the first cavity can be understood as a two-mirror cavity
with M234 as the end mirror giving an additional phase shift.
Thus the resonance condition �leading to a maximum light
field� in the first cavity can be determined according to

�12�

�shown by the cyan line in the upper graphs of Fig. 3�. Since
the enhancements of the second cavity �C2� and the third
cavity �C3� are constant if �2 and �3 are fixed �refer to Eqs.
�1a� and �1b��, a maximum light field in the first cavity leads
to maximum light fields in the second and third cavities. This
relation drastically reduces the parameter range for the reso-
nances of the four-mirror cavity.

C. Power in substrates

Another boundary condition can be derived from the point
symmetry in the loci of maximum optical gain. Concerning
the pattern of the internal fields in the �3-�1 plane, those of
the first and third resonators are point symmetric whereas
that of the second one is not �refer to Fig. 3�. Considering the
absolute values of the carrier fields Ck �Eqs. �1a�–�1c�� re-
veals that the carrier fields are point symmetric in the tunings
�k. Due to the fact that all tunings in Ck appear with the
factor i, the relation

	Ck��k�	 = 	Ck
*��k�	 = 	Ck�− �k�	 �13�

is valid, explaining a point symmetry around the origin ��k

=0�. Since in general �2 is not zero but tuned ��2
c� to give a

certain frequency splitting, the relation of Eq. �13� is not
fulfilled. In this case,

	Ck��1,�2
c,�3�	 � 	Ck�− �1,�2

c,− �3�	 , �14�

showing that 	C2	2 is not point symmetric in the �3-�1 plane.
The symmetry still existent in the pattern of 	C1	2 and 	C3	2
comes from the point-symmetric phase shift arg��234� in re-
flection around the resonance in M234. Here M234 is consid-
ered as a two-mirror cavity with M23 as the coupling mirror.
Accordingly the phase shift in reflection of M234 must corre-
spond to the point-symmetric two-mirror-cavity case. From
this phase shift the coordinates of the symmetry point can be
determined in analogy to Eq. �12� as

�3
sym = −

1

2
arg��32��2

c�� , �15�

�1
sym = −

1

2
arg��234��2

c,�3
sym�� . �16�

Note that, in Eq. �15�, �3
sym is determined in reflection of the

second cavity �etalon�. This is possible because of the reci-
procity concerning the resonance in M234. Here reciprocity
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means that the transmission and thus the resonance condition
of M234 must not differ if the light is injected at M4 instead
of M2.

Then, to fulfill the condition of low power in the second
resonator, only those operating points lying on the lower-left
resonance branch are suitable �refer to the optical gain of the
second cavity shown in the middle of Fig. 3�. Since the pat-
terns of the internal carrier fields are only determined by the
reflectivities of the mirrors, appropriate operating points with
respect to the power buildup can be investigated indepen-
dently from the macroscopic cavity lengths Lk. The choice of
the lengths concerns only the GW-transfer function.

D. Frequency response

The frequency response of the four-mirror cavity is rep-
resented by a cut through the �3-�1 plane �upper graphs in
Fig. 3� along an oblique line given by

u��� =
L1

L3
��3 − �3

op� + �1
op, �17�

where �3
op and �1

op correspond to the operating point of the

carrier light. The slope of this line is determined by the ratio
L1 /L3 because the tunings change with the frequency accord-
ing to d�k /d�
Lk. Thus, resonances in the transfer function
are indicated by the intersections of u��� with the loci of
maximum optical gain given by Eq. �12�. The frequency
splitting �sp is given by the coordinates of these intersection
points and is counted from the symmetry point �refer to the
lower graphs of Fig. 3�. The loci of maximum optical gain
are determined in dependence of given �3 �and �2

c�. Thus,
they are related to maxima along cuts parallel to the �1 axis.
Accordingly these maxima are not necessarily local maxima
along the line u���. However, it is useful to preestimate reso-
nances in the transfer functions considering these intersec-
tions �see below�. As the transmission Tc of the second cavity
determines the coupling between the first and third resona-
tors and thus the frequency splitting �sp, an expression can
be derived giving Tc as a function of this frequency splitting.
For this purpose we consider a three-mirror cavity with equal
length L1� and L2� and an end mirror with �3�=�4. Here
the transmission �also Tc� of the second mirror deter-
mines the frequency splitting. Solving the intersection
�−1/2�arg��23� ��spL2� /c��= �L1� /L2���spL2� /c for �2� gives

FIG. 3. �Color online� For easier readability refer to the colored online version. The upper three graphs show the optical gains 	Ck	2 in
dependence of �3 and �1. The tuning of the second cavity is fixed. The cyan curve illustrates that the loci of maximum optical gain
�resonance� can be related to the phase shift arg��234� in reflection of M234 �refer to Eq. �12��. Note that these local maxima are determined
in dependence of �3 and �2. Accordingly, the loci correspond to maxima in cross sections �cuts� parallel to the �1 axis. The cut through the
�3-�1 plane corresponding to the frequency response of each cavity is shown with the green lines �u�f��. Here L1 and L3 are 2 km each. The
point symmetry of the resonance condition is illustrated with the yellow crosses. The red crosses mark the intersections of u�f� with the loci
of maximum optical gains �obtained from solving the right-hand side of Eq. �12� for Eq. �17��. The lower graphs show the frequency
response of the optical gains �green curves� and the phasing �blue curves� along the green line �u�f�� in the upper graphs. The frequency scale
is calculated as f = ��3

sym−�3�c /L3. Thus, f =0 Hz is related to the symmetry point. The frequency splitting �sp=2�fsp is defined with
respect to this symmetry point. The connections to the upper graphs demonstrate that the responses of the first and third resonators are
symmetric �yellow line� and furthermore that resonances in the frequency response can be preestimated by the intersection of u�f� with the
loci of resonance.
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�18�

Note that the resonance frequencies of the single resonators
depend on their macroscopic lengths according to FSRk
=c /2Lk. Thus, the frequency splitting �sp of the coupled
resonators is related to the lengths L1 and L3, too. In the
following, explicit values of �sp always refer to L1=L3
=2 km and to the symmetry point. For fixed reflectivities �2
and �3 the tuning �2

c leading to the desired Tc is given by

�2
c =

1

2
arccos�Rc − �2

2 − �3
2 + Rc�2

2�3
2

2�2�3Tc
� . �19�

Since the effective transmission Tc of the second cavity is the
decisive parameter for the frequency splitting, �2 and �3 ini-
tially can be chosen almost arbitrarily. Only the coordinates
of the symmetry point depend on �2 and �3. The patterns of
	C1	2 and 	C3	2 related to this symmetry point stay the same.
Later the optimal values are determinable by the boundary
condition of low power in the second cavity. Accordingly, for
a certain Tc the enhancement of the carrier light only de-
pends on �1, �3, and �1 ��4 is 50 ppm�. The GW-transfer
function additionally depends on L1 and L3. Thus, the param-
eter space for the sensitivity of the investigated topology is
reduced to a six-dimensional one. Additionally, �2 can be
chosen from Eq. �19� to give a certain frequency splitting.
Then, the symmetry point from Eqs. �15� and �16� serves as
the starting point for �3 and �1, leading to a reduction of the
parameter range for the tunings.

IV. PARAMETER STUDIES

A. Special cases

The analysis of the resonance feature in Sec. III revealed
that the resonance of the carrier light does not depend on the
macroscopic lengths Lk, because the resonance is determined
by the microscopic lengths �tunings�. Furthermore, it was
stated that the sensitivity for gravitational waves is propor-
tional to the carrier amplitudes in the cavities. Thus, operat-
ing points yielding satisfying sensitivities are restricted to
states where the carrier is on resonance �or close to reso-
nance�. For given reflectivities these states are determined by
Eq. �12�. First we investigate the power buildup �optical
gain� in the first and third cavities in dependence of the fre-
quency splitting induced by the tuning �2

c of the second cav-
ity. Here, the reflectivities �2

2 and �3
2 were set to 0.999 each

and �1
2 was set to 0.993. The frequency splitting fsp

=�sp /2� was investigated in a range from 50 Hz to 1 kHz,
corresponding to the detection band of terrestrial
gravitational-wave detectors. Furthermore, the respective op-
erating points were chosen as the intersection point �located
on the lower left resonance branch� of u��� with the loci of
maximum optical gain. Note that the carrier is resonant on
these states �refer to Fig. 3�. Then the upper sidebands are

expected to be resonant at frequencies �=2�sp. The corre-
sponding tuning �2

c was determined by Eqs. �18� and �19�.
The cavity lengths L1 and L3 were set to 2 km each. This
investigation revealed that both the optical gain and reso-
nance bandwidth in these special states are independent of
the frequency splitting in the investigated region. Figure 4
shows the shot-noise-limited sensitivities for various tunings
�2

c.
Since for these states the tunings and cavity lengths were

determined with respect to certain frequency splittings and
resonances in the frequency response, �1 is the only remain-
ing free parameter affecting the optical gains. Accordingly,
these states are investigated for the dependence on �1. The
results are shown in Fig. 5. It can be seen that the accuracy
of the estimation of resonances in the response depends on
�1. This is because, on the one hand, the intersection points
indicating these resonances correspond to local maxima
along �1 and not along u���. On the other hand, these inter-
section points were determined independent of �1. Consider-
ing an extreme case clarifies that the resonances in the fre-
quency response change with �1. If �1
0 is assumed, the
influence of the first cavity is negligible. In this case, the
resonance feature is dominated by M234 whose resonance
corresponds to the symmetry point. Accordingly, for a low �1
the frequency response becomes maximum on the symmetry
point, explaining the peak sensitivity around 50 Hz for �1
=0.95 �solid curve in Fig. 5�. Furthermore, it can be seen that
the impedance-matched case optimally exploiting the laser
input field yields a better sensitivity compared to advanced
LIGO only in a very narrow region.

Figure 6 shows the sensitivity for different ratios L1 /L3.
This ratio determines the slope of the oblique line u�f� in
Fig. 3 representing the frequency response. Accordingly, the
intersection points of this line with the loci of resonance vary
with this ratio. Also the magnitude of the signal sidebands
induced in a cavity scale with its length �refer to Eq. �7��.
Hence, if L1 is greater than L3, the GW-transfer function is
dominated by the sidebands induced in the first cavity �if the
powers in the first and third cavities are similar�. The optical
gain 	C1	2 is very low around the symmetry point as can be
seen in Fig. 3. This low optical gain corresponds to the bad
sensitivity around 50 Hz for L1 /L3=2.5 km/1.5 km �solid
curve in Fig. 6�. This fact indicates that satisfying sensitivi-
ties in a broad frequency range are only achievable for con-
figurations with L1 /L3�1. Also configurations with very
short L1 �or L3� yield no satisfying sensitivities. In these
cases, the four-mirror cavity behaves like an ordinary two-
mirror cavity with only one resonance frequency given at
c /2L3 �or c /2L1�.

All other nonspecial cases were investigated with a nu-
merical code developed for this purpose. With this code, the
parameters were systematically varied considering all rela-
tions and dependences obtained in Sec. III. The frequency
splitting fsp was varied between 50 Hz and 1000 Hz. The
tunings �3 and �1 were scanned around the lower-left reso-
nance branch. Various ratios of L1 /L3 were investigated. As
already expected from the investigation of the special cases
described above, there were no impedance-matched configu-
rations found having sensitivities comparable in a wide fre-
quency range to the advanced LIGO optical configuration.
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Thus, also for the four-mirror cavity the power recycling
technique comes in consideration to broaden the bandwidth
for signal sidebands.

B. Exemplary configurations

Here we present the properties of one exemplary configu-
ration, which yields sensitivities typical for a four-mirror
cavity enhanced Michelson interferometer. Figure 7 shows

FIG. 4. �Color online� Sensitivity of the four-mirror cavity for various frequency splittings fsp=�sp/2� induced by the tuning �2
c. Graphs

�a� and �b� show the sensitivities in phase and amplitude quadrature for a folded geometry �differential mode�. Graphs �c� and �d� correspond
to the unfolded setup �common mode�. It can be seen that the best sensitivities can be achieved in the differential mode.

FIG. 5. �Color online� Sensitivity in the amplitude quadrature
for the differential mode with different parameters �1

2. Here the
tuning �2

c corresponds to a splitting of 50 Hz.
FIG. 6. �Color online� Sensitivity in the phase quadrature of the

differential mode with different ratios of L1 /L3.
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the envelope of the tunable peak sensitivity and exemplary
sensitivity curves for different frequency splittings, whereas
the reflectivities are fixed. The reflectivities �2=�3=0.999
were chosen to ensure low powers in the second cavity em-
bedding optical substrates. The reflectivity �1=0.996 was
chosen as a compromise between a high peak sensitivity and
a broad bandwidth. With this setup, the power in the first and
third cavities are identical �approximately 61 kW with
125 W input power� and independent of the frequency split-
ting. The power in the second cavity is P2
16 W. Thus, the
boundary condition of low powers in optical substrates can
be fulfilled with remarkably low powers in the second cavity.
The sensitivity of this configuration is as good as the ad-
vanced LIGO ones if identical powers at the beam splitter are

assumed. It should be mentioned that the four-mirror cavity
can be tuned to high frequencies with a constant peak sensi-
tivity in contrast to RSE topologies. Also the detection band-
width is not limited by the arm cavities’ finesse �refer to the
envelopes shown in Fig. 7�, because the effective finesse is
adjustable by the transmission of the second cavity. This fact
also implies that the intracavity losses in the second cavity
caused by the antireflection coatings and absorption in the
optics’ substrates are not limiting the performance of the
four-mirror cavity.

V. CONCLUSION

We derived the expressions describing the shot-noise-
limited sensitivity of a four-mirror-cavity enhanced Michel-
son interferometer. The detailed analysis of the resonance
feature using expressions similar to the ordinary two-mirror
cavity case offers a qualitative and intuitive understanding of
this complex configuration. With this understanding it was
possible to systematically investigate the configuration for
shot-noise-limited sensitivities throughout the whole 11-
dimensional parameter space. Despite the huge parameter
space giving a variety of possibilities to adapt the shape of
the sensitivity curve to the requirements, contrary to expec-
tations there are no parameter configurations optimally ex-
ploiting both the frequency splitting and the laser input field
yielding better sensitivities compared to advanced LIGO in a
wide frequency range. Only if identical powers at the beam
splitter are assumed does the four-mirror cavity provide sen-
sitivities comparable to the advanced LIGO ones. However,
these powers at the beam splitter would still be restricted by
the problem of thermal lensing. Thus, our results confirm the
choice of RSE topologies for the second generation of inter-
ferometric gravitational detectors.
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FIG. 7. �Color online� Comparison of the envelopes of the tun-
able peak sensitivity in the phase quadrature. Exemplary sensitivity
curves with different tunings but fixed reflectivities are shown.
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